Sabtu, 21 Juli 2018

Asal Mula Rumus Luas Segitiga

     Segitiga merupakan bangun datar yang terbentuk dari tiga titik yang tidak segaris. Segitiga memiliki tiga sisi, dengan jumlah panjang dua sisinya lebih dari panjang sisi yang lain  dan segitiga memiliki tiga sudut, dengan jumlah besar sudut dalam segitiga adalah 180 derajat.

Jenis-jenis segitiga :

1)      Ditinjau dari panjang sisi-sisinya sebagai berikut.

a. Segitiga sebarang, panjang ketiga sisinya berbeda.

b. Segitiga sama kaki, panjang dua sisinya sama sehingga kedua sudut kakinya sama besar.

c. Segitiga sama sisi, panjang ketigan sisinya sama.

2)      Ditinjau dari besar sudut-sudutnya sebagai berikut.

a. Segitiga lancip, ketiga sudutnya lancip (kurang dari 90 derajat)

b. Segitiga siku-siku, salah satu sudutnya siku-siku (sudutnya sebesar 90 derajat)

c. Segitiga tumpul, salah satu sudutnya tumpul (lebih dari 90 derajat atau kurang dari 180 derajat)

     Pada kesempatan kali ini, kita akan belajar tentang asal mula luas segitiga (pembuktian luas segitiga). Sejak di bangku sekolah dasar kita telah mengenal rumus segitiga sebagai berikut :


     Rumus tersebut digunakan apabila panjang alas dan tinggi suatu segitiga diketahui. Jika diketahui dua sisi dan sudut yang diapit, maka luas segitiga dapat dihitung dengan menggunakan rumus yang berkaitan dengan trigonometri. Sedangkan, jika diketahui panjang ketiga sisi segitiga, maka luas segitiga dapat dihitung dengan formula heron.


Pembuktian Rumus Luas Segitiga Siku-siku.

    Kita akan menggunakan suatu persegi panjang untuk mecari rumus segitiga siku-siku. Misalkan, diketahui suatu persegi panjang ABCD :


AC merupakan diagonal yang membagi persegi panjang ABCD menjadi dua segitiga kongruen, yaitu segitiga ABC dan segitiga ACD.

Luas persegi panjang ABCD = panjang x lebar.

L. ABCD = L. ABC + L. ACD

AB . BC  = L. ABC + L. ACD

Karena segitiga ABC dan ACD merupakan dua segitiga yang kongruen, sehingga :

L. ABC = L. ACD .

            AB . BC  = L. ABC + L. ACD

            AB . BC  = 2 . L. ABC

            L. ABC   = ½ . AB . BC

Pada segitiga ABC, AB dan BC secara berturut-turut merupakan alas dan tinggi segitiga ABC. Jadi, terbukti bahwa :





Pembuktian Rumus Luas Segitiga Sama Kaki

Diketahui segitiga sama kaki ABC, denga sisi AC = sisi BC.
Garis CT merupakan garis tinggi yang membagi segitiga ABC menjadi segitiga siku-siku TAC dan segitiga siku-siku TCB. Luas segitiga siku-siku dapat dihitung dengan rumus yang telah dibuktikan.

L. ABC

= L. TAC + L. TCB

= ( ½ . AT . TC ) + ( ½ . BT . TC)

= ½ . TC . (AT + BT)

= ½ . TC . AB

Pada segitiga ABC, TC dan AB secara berturut-turut merupakan tinggi dan alas segitiga. Jadi, terbukti bahwa :




Pembuktian Rumus Luas Segitiga Sembarang 

Misalkan diketahui segitiga sembarang ABC 
Lukis garis tinggi pada segitiga sembarang, dari titik C.
Dari gambar diatas, terdapat segitiga baru yaitu TAC yang didalamnya memuat segitiga sembarang ABC  dan segitiga siku-siku TCB. Maka luas segitiga ABC sama dengan Luas segitiga TAC dikurangi dengan Luas segitiga TCB.
L. ABC
= L. TAC – L. TCB
= ( ½ . TA . TC ) – ( ½ . TC . TB )
= ½ . TC . ( TA – TB )
= ½ . TC . AB
Pada segitiga ABC, AB dan TC secara berturut-turut merupakan tinggi dan alas segitiga ABC. Jadi, terbukti bahwa :




Referensi :
HAQ, A. I. (2015, Juli 5). Retrieved Juli 21, 2018, from KimiaMath: http://www.kimiamath.com/pembuktian-rumus-luas-segitiga/

1 komentar: